Dynamical self-regulation in self-propelled particle flows
نویسندگان
چکیده
منابع مشابه
Dynamical self-regulation in self-propelled particle flows.
We study a continuum model of overdamped self-propelled particles with aligning interactions in two dimensions. Combining analytical theory and computations, we map out the phase diagram for the parameter space covered by the model. We find that the system self-organizes into two robust structures in different regions of parameter space: solitary waves composed of ordered swarms moving through ...
متن کاملSelf-regulation in self-propelled nematic fluids.
We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dyn...
متن کاملBrownian motion of a self-propelled particle.
Overdamped Brownian motion of a self-propelled particle is studied by solving the Langevin equation analytically. On top of translational and rotational diffusion, in the context of the presented model, the 'active' particle is driven along its internal orientation axis. We calculate the first four moments of the probability distribution function for displacements as a function of time for a sp...
متن کاملRole of particle conservation in self-propelled particle systems
Actively propelled particles undergoing dissipative collisions are known to develop a state of spatially distributed coherently moving clusters. For densities larger than a characteristic value, clusters grow in time and form a stationary well-ordered state of coherent macroscopic motion. In this work we address two questions. (i) What is the role of the particles’ aspect ratio in the context o...
متن کاملTransport and aggregation of self-propelled particles in fluid flows.
An analysis of the dynamics of prolate swimming particles in laminar flow is presented. It is shown that the particles concentrate around flow regions with chaotic trajectories. When the swimming velocity is larger than a threshold, dependent on the aspect ratio of the particles, all particles escape from regular elliptic regions. For thin rodlike particles the threshold velocity vanishes; thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.85.061903